- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Kross, Sean (3)
-
Guo, Philip J. (2)
-
Guo, Philip (1)
-
Lau, Sam (1)
-
Wu, Eugene (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Kross, Sean; Guo, Philip (, Proceedings of the ACM on Human-Computer Interaction)Data scientists often collaborate with clients to analyze data to meet a client's needs. What does the end-to-end workflow of a data scientist's collaboration with clients look like throughout the lifetime of a project? To investigate this question, we interviewed ten data scientists (5 female, 4 male, 1 non-binary) in diverse roles across industry and academia. We discovered that they work with clients in a six-stage outer-loop workflow, which involves 1) laying groundwork by building trust before a project begins, 2) orienting to the constraints of the client's environment, 3) collaboratively framing the problem, 4) bridging the gap between data science and domain expertise, 5) the inner loop of technical data analysis work, 6) counseling to help clients emotionally cope with analysis results. This novel outer-loop workflow contributes to CSCW by expanding the notion of what collaboration means in data science beyond the widely-known inner-loop technical workflow stages of acquiring, cleaning, analyzing, modeling, and visualizing data. We conclude by discussing the implications of our findings for data science education, parallels to design work, and unmet needs for tool development.more » « less
-
Kross, Sean; Guo, Philip J. (, Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems)Data science has been growing in prominence across both academia and industry, but there is still little formal consensus about how to teach it. Many people who currently teach data science are practitioners such as computational researchers in academia or data scientists in industry. To understand how these practitioner-instructors pass their knowledge onto novices and howthat contrasts with teaching more traditional forms of programming, we interviewed 20 data scientists who teach in settings ranging from small-group workshops to large online courses. We found that: 1) they must empathize with a diverse array of student backgrounds and expectations, 2) they teach technical workflows that integrate authentic practices surrounding code, data, and communication, 3) they face challenges involving authenticity versus abstraction in software setup, finding and curating pedagogically-relevant datasets, and acclimating students to live with uncertainty in data analysis. These findings can point the way toward better tools for data science education and help bring data literacy to more people around the world.more » « less
An official website of the United States government
